

CiBARI il cibo della salute Bari, 1-2-3 Dicembre 2023 Teatro Petruzzelli Camera di Commercio di Bari

LA NUTRIGENOMICA DELL'OLIO: COME TI ACCENDO I GENI

Michele Vacca, MD PhD Assistant Professor in Internal Medicine Interdisciplinary Department of Medicine University of Bari "Aldo Moro", Italy Mail: Michele.Vacca@uniba.it

Nutrition – History and Trends

1900 Detection/ prevention of deficiencies (e.g. vitamin A, Iron)

1970

Balanced diet

- Nutritional recommendations (the concept of calories)
- Supply of sufficient nutrients (carbohydrates , fats, proteins, minerals, vitamins)

1990 Benefits of specific functional foods ("beyond the balanced diet"– role of non nutrients)

2000-2010 Nutritional Genomics

Functional Foods & Rainbow Diet

Colors	Foods	Colorful Protective Substances	
Red	Tomato and tomato	and Possible Actions	
	products, watermelon, guava	Lycopene: antioxidant, cuts prostate cancer risk	
Orange	Carrot, yam, sweet potato, mango, pumpkin	Beta-carotene: supports	
Yellow-orange	Citrus fruits—orange,	immune system; powerful antioxidant	
	lemon, grapefruit, papaya, peach	Vitamin C, flavonoids: inhibit tumor cell growth, detoxify harmful substances	
Green	Spinach, kale, collard, and other greens	Folate: builds healthy	
Green-white	Broccoli, brussels	cells and genetic material	
	sprouts, cabbage, cauliflower	Indoles, lutein: eliminate excess estrogen and carcinogens	
White-green	Garlic, onion, chive, asparagus	Allyl sulfides: destroy cancer cells, reduce	
Blue	Blueherries purple grapes plums	cell division, support immune system	
Pad aussia	processines, purple grapes, promo	Anthocyanins: destroy free radicals	
kea-purple	Grapes, berries, plums	Reservatrol: may	
Brown	Whole grains, legumes	decrease estrogen production	
	grante, regumer	Fiber: carcinogen removal	

Nutrition – History and Trends

1900 Detection/ prevention of deficiencies (e.g. vitamin A, Iron)

1970

- **Balanced diet**
 - Nutritional recommendations (the concept of calories)
 - Supply of sufficient nutrients (carbohydrates , fats, proteins, minerals, vitamins)

1990 Benefits of specific functional foods ("beyond the balanced diet" – role of non nutrients)

2000-2010 Nutritional Genomics

Nutritional Genomics - Definition

"The study of how different foods can interact with particular genes to increase/decrease the risk of diseases"

Goal

Use of personalized diets to:

-prevent or delay the onset of disease

-optimize and maintain human health

vmo0960 www.fotosearch.com

The first step of Nutrigenomics: Decoding the Genetic Code of Life

Nutritional Genomics – Main assumptions

- The DNA sequence brings only the "Genetic Code"
- The **Phenotype** is the resultant of the interaction of this genetic code with the environment

• Genes can be turned "on" or "off" by:

- Intracellular processes (e.g. signaling cascades)
- Hormones (e.g. steroids)
- Environmental influences (e.g. cold)
- Drugs (Pharmacogenomics)
- Diet (Nutrigenomics)

inducing a rewiring in the activation status of different pathways and a modification of cell behavior

 The composition of food goes beyond "caloric" content as it can influence the biology of our body;

TG enriched in DNL products are increased in the VLDL of patients with MetS/NAFLD

Human Nuclear Hormone Receptor Super Family

Endocrine Receptors	Adopted Orphan Receptors	Orphan Receptors
Steroid ReceptorsGRglucocorticoidMRmineralocorticoidPRprogesteroneARandrogenERα,βestrogen	Lipid sensorsRXRα,β,γ9cRAPPARα,δ,γfatty acidsLXRα,βoxysterolFXRbile acidsPXRxenobiotics	SHP ? DAX-1 ? TLX ? PNR ? GCNF ? TR2,4 ? NR4Aα,β,γ ?
Heterodimeric ReceptorsTRα,βthyroid hormoneRARα,β,γretinoic acidVDRvitamin D (bile acid)	$\begin{array}{l l} \underline{Enigmatic Orphans} \\ CAR & androstane \\ HNF-4\alpha,\gamma & fatty acids \\ SF-1/LRH-1 & phospholipids \\ ROR\alpha,\beta,\gamma & < \begin{array}{l} cholesterol \\ retinoic acid \\ ERR\alpha,\beta,\gamma & estrogen? \end{array}$	Rev-erbα,β ? COUP-TFα,β,γ ?

There are sensors for:

- Retinoids (Vitamin A)
- Fatty acids
- Cholesterol
- Bile acids

End	locrine Receptors	Adopted Orp	han Receptors	Orphan Recept	ors
<u>Ste</u> GR MR PR AR ERα,β	eroid Receptors glucocorticoid mineralocorticoid progesterone androgen estrogen	<u>Lipid s</u> RXRα,β,γ PPARα,δ,γ LXRα,β FXR PXR	sensors 9cRA fatty acids oxysterol bile acids xenobiotics	SHP DAX-1 TLX PNR GCNF TR2,4 NB4Aq 6 y	????????
<u>Hetero</u> TRα,β RARα,β,γ VDR	dimeric Receptors thyroid hormone retinoic acid vitamin D (bile acid)	<u>Enigmati</u> CAR HNF-4α,γ SF-1/LRH-1 RORα,β,γ < ERRα,β,γ	c Orphans androstane fatty acids phospholipids cholesterol retinoic acid estrogen?	Rev-erbα,β COUP-TFα,β,γ	???

Human Nuclear Hormone Receptor Super Family

Human Nuclear Hormone Receptor Super Family

Effects of Lifestyle Changes, Diet & Physical Exercise on gene expression of patients with Prostate Cancer

Metabolic Changes	Delta
Body mass index (BMI)	-2.6 kg/m ²
Systolic BP	-9.2 mmHg
Diastolic BP	-5.4 mmHg
Total cholesterol	-45.2 mg/dL
LDL cholesterol	-34.2 mg/dL
HDL cholesterol	-8.3 mg/dL
LDL/HDL ratio	-0.4

Ornish, et al. PNAS 2008

Cell Metabolism Article

Humans Φ Obese of Resveratrol Supplementation on Energy Days of 30 **Profile** Effects Metabolic **Calorie Restriction-like** and Metabolism

KEGG pathway: oxidative phosphorylation

Humans Metabolism and Metabolic Profile in Obese of Resveratrol Supplementation on Energy Calorie Restriction-like Effects of 30 Days

Table 2. Plasma Biochemistry			
	Placebo	Resveratrol	P value
Resveratrol (ng/ml)	Not detectable	182.59 ± 30.33	-
Dihydroresveratrol (ng/ml)	Not detectable	289.14 ± 93.57	-
Glucose (mmol/l)	5.28 ± 0.15	5.06 ± 0.13	0.05
Insulin (mU/l)	11.94 ± 1.11	10.31 ± 1.25	0.04
HOMA index	2.80 ± 0.20	2.43 ± 0.24	0.03
Triglycerides (mmol/l)	2.29 ± 0.23	2.16 ± 0.21	0.03
Nonesterified fatty acids (µmol/l)	572 ± 77	621 ± 38	0.59
Leptin (ng/ml)	14.28 ± 1.98	12.91 ± 1.84	0.04
Adiponectin (µg/ml)	6.47 ± 0.55	6.45 ± 0.56	0.95
CRP (ng/ml)	1.52 ± 0.35	1.33 ± 0.31	0.11
IL-1β (pg/ml)	1.33 ± 0.27	0.94 ± 0.15	0.20
IL-6 (pg/ml)	3.13 ± 0.67	2.42 ± 0.38	0.09
IL-8 (pa/ml)	4.94 ± 0.59	4.28 ± 0.25	0.19
TNF-α (pg/ml)	16.15 ± 2.27	15.14 ± 2.03	0.04
Leukocytes (10 ⁹ /l)	7.03 ± 0.44	6.48 ± 0.39	0.03
ALAT (U/I)	31.91 ± 2.21	28.09 ± 1.54	0.02

Plasma values after 30 days of resveratrol or placebo supplementation. Values are given as means \pm SEM (n = 11). See also Table S1.

Table 3. Clinical Improvement after Resveratrol			
	Placebo	Resveratrol	P value
24 hr respiratory quotient	0.89 ± 0.007	0.91 ± 0.006	0.09
Respiratory quotient daytime	0.89 ± 0.004	0.91 ± 0.003	0.001
Respiratory quotient nighttime	0.87 ± 0.007	0.88 ± 0.009	0.18
24 hr energy expenditure (MJ/day)	11.86 ± 0.29	11.91 ± 0.29	0.64
Sleeping metabolic rate first night (MJ/day)	8.09 ± 0.24	7.75 ± 0.23	0.007
Sleeping metabolic rate second night (MJ/day)	8.06 ± 0.22	7.90 ± 0.18	0.06
Diet-induced thermogenesis (MJ/day)	1.02 ± 0.13	1.14 ± 0.17	0.33
Physical activity index	1.49 ± 0.02	1.50 ± 0.01	0.37
Systolic blood pressure (mmHg)	130.5 ± 2.7	124.7 ± 3.1	0.006
Diastolic blood pressure (mmHg)	81.6 ± 2.8	80.0 ± 2.9	0.18
Mean arterial pressure (mmHg)	97.9 ± 2.7	94.9 ± 2.9	0.02
Energy metabolism (n = 10), and blood pressure (n = 11) after 30 days of resveratrol or placebo supplementation. Values are given as means \pm SEM. See also Table S2.			

Where Olive Oil Stands from a «Nutrigenomics» standpoint?

Olive Oil

98-99% Major components •Unsaturated fatty acids (85%):

•Monounsaturated fatty acids

•Oleic acid: (70-80%)

•Polyunsaturated fatty acids (omega-6)

•Linoleic acid (4-12%)

•Saturated fatty acids (small amounts):

•Palmitic acid (7-15%)

•Stearic acid (2-6%)

0.5-2% Minor components:

•Alcohols

•Plant Sterols

Polyphenols

•Hydrocarbons

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives MDPI 2021

98-99% Major components •Unsaturated fatty acids (85%):

•Monounsaturated fatty acids

•Oleic acid: (70-80%)

•Polyunsaturated fatty acids (omega-6)

•Linoleic acid (4-12%)

•Saturated fatty acids (small amounts):

•Palmitic acid (7-15%)

•Stearic acid (2-6%)

0.5-2% Minor components:

Alcohols

•Plant Sterols

Polyphenols

Hydrocarbons

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives MDPI 2021

Olive Oil

Total plasma fatty acid % changes after 1 year interventional study (PREDIMED)

Adapted from Mayneris-Perxachs J et al., PlosOne 2014

Olive Oil

98-99% Major components •Unsaturated fatty acids (85%):

•Monounsaturated fatty acids

•Oleic acid: (70-80%)

•Polyunsaturated fatty acids (omega-6)

•Linoleic acid (4-12%)

•Saturated fatty acids (small amounts):

•Palmitic acid (7-15%)

•Stearic acid (2-6%)

0.5-2% Minor components:

Alcohols

•Plant Sterols

Polyphenols

Hydrocarbons

Plant Sterols

- Anti-inflammatory effect
- Competition with cholesterol absorbtion
- Activation of pathways involved in: signal transduction, cellular response to stress, cell proliferation and differentiation
- Reduction of:
 - LDL cholesterol (6-15% The combined intake of phytosterols and statins results in an additional reduction of 4.5-6.4% in LDL cholesterol)
 - Triglycerides (8%)

98-99% Major components •Unsaturated fatty acids (85%):

•Monounsaturated fatty acids

•Oleic acid: (70-80%)

•Polyunsaturated fatty acids (omega-6)

•Linoleic acid (4-12%)

•Saturated fatty acids (small amounts):

•Palmitic acid (7-15%)

•Stearic acid (2-6%)

0.5-2% Minor components:

Alcohols

•Plant Sterols

Polyphenols

Hydrocarbons

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives MDPI 2021

Olive Oil

Polyphenols

decrease of

•oxidative damage induced by lipid

endothelial dysfunction

pro-thrombotic state

pro-inflammatory state

Adapted from Mayneris-Perxachs J et al., PlosOne 2014

98-99% Major components

•Unsaturated fatty acids (85%):

Monounsaturated fatty acids

•Oleic acid: (70-80%)

Linoleic acid (4-12%)

•Saturated fatty acids (small amounts):

•Palmitic acid (7-15%)

Stearic acid (2-6%)

0.5-2% Minor components:

Alcohols

Plant Sterols

Polyphenols

•Hydrocarbons

•Polyunsaturated fatty acids (omega-6)

Olive Oil

Table 1. Classification of the main hydrophilic phenolic compounds found in virgin olive oils and their average concentration in different types of olive oil.

Chemical Structure	Components	ROO mg/kg * (Mean \pm SD)	Virgin (Fine) mg/kg * (Mean \pm SD)	EVOO mg/kg * (Mean \pm S
	benzoic	-	-	-
	gallic	-	-	-
	p-hydroxybenzoic	-	0.37 ± 0.37	-
	protocatechuic	-	1.47 ± 0.56	-
	syringic	-	0.81 ± 1.17	0.25 ± 0.25
Dhanalla asi da	vanillic	-	1.22 ± 2.04	0.64 ± 0.50
Phenolic acids	caffeic	-	0.21 ± 0.63	0.19 ± 0.45
	cinnamic	-	-	0.17 ± 0.14
	o-coumaric	-	-	-
	<i>p</i> -coumaric	-	0.24 ± 0.81	0.92 ± 1.03
	ferulic	-	0.19 ± 0.50	0.19 ± 0.19
	sinapic	-	-	
	hydroxytyrosol (3,4-DHPEA)	6.77 ± 8.26	3.53 ± 10.19	7.72 ± 8.81
Phenolic alcohols	tyrosol (p-HPEA)	4.11 ± 2.24	5.34 ± 6.98	11.32 ± 8.53
	oleuropein	-	-	1.65 ± 1.85
	oleuropein aglycone	125.40 ± 41.80	120.57 ± 125.53	36.63 ± 24.34
	ligstroside aglycone	59.93 ± 18.58	82.01 ± 67.78	17.44 ± 18.13
	monoaldehydic form of oleuropein aglycone (3,4-DHPEA-EA)	10.90 ± 0.00	95.00 ± 116.01	72.20 ± 64.00
Chemical Structure Phenolic acids Phenolic alcohols Secoiridoids Flavonoids Lignans Hydroxy-isocromans Polyphenols, total	monoaldehydic form of ligstroside aglycone (p-HPEA-EA)	15.20 ± 0.00	69.05 ± 69.00	38.04 ± 17.23
	dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol (oleacein: 3.4-DHPEA-EDA)	57.37 ± 27.04	77.83 ± 256.09	251.60 ± 263.24
	dialdehydic form of decarboxymethyl elenolic acid linked to tyrosol (oleocanthal: p-HPEA-EDA)	38.95 ± 9.29	71.47 ± 61.85	142.77 ± 73.17
	flavones			
	luteolin	1.17 ± 0.72	1.29 ± 1.93	3.60 ± 2.32
F 1	apigenin	0.30 ± 0.17	0.97 ± 0.71	11.68 ± 12.78
Flavonoids	flavanonol			
	taxifolin	-	-	-
	(+)-1-acetoxypinoresinol	7.52 ± 9.10	4.43 ± 21.28	6.63 ± 10.78
Lignans	(+)-pinoresinol	24.05 ± 10.02	23.71 ± 17.03	4.19 ± 2.78
	1-phenyl-6,7-dihydroxy-isochroman		-	-
Hydroxy-isocromans	1-(3'-methoxy-4'hydroxy)-6,7-dihydroxy-isochroman		-	-
Polynhenols total		198.0 ± 14.85	206.73 ± 150.08	551.42 ± 235.02

Lopes de Souza A. P. et al., Nutrients 2017

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives MDPI 2021

Adapted from Mayneris-Perxachs J et al., PlosOne 2014

Olive Oil

A Primary End Point (acute myocardial infarction, stroke, or death from cardiovascular causes)

Med diet, EVOO: hazard ratio, 0.69 (95% CI, 0.53–0.91) Med diet, nuts: hazard ratio, 0.72 (95% CI, 0.54–0.95)

- Major component of the Mediterranean Diet
- Functional food:
 - anti-inflammatory
 - anti-oxidant
 - anti-thrombotic
 - anti-atherosclerotic
- Potential therapeutic efficacy:
 - Cardiovascular system;
 - Metabolism;
 - Hepatobiliary and intestinal tracts;
 - Immune system;

30% reduction in major CVD events in 7447 high CVD risk subjects followed for 5 years.

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives

Olive Oil

- Major component of the Mediterranean Diet
- Functional food:
 - anti-inflammatory
 - anti-oxidant
 - anti-thrombotic
 - anti-atherosclerotic
- Potential therapeutic efficacy:
 - Cardiovascular system;
 - Metabolism;
 - Hepatobiliary and intestinal tracts;
 - Immune system;

Fig. 3 Contribution of OO on CVDs by intestinal microbiota regulating. Ole: oleuropein. Tyr: tyrosol. Green arrows: promoting effect. Red arrows: inhibitory action.

Lu Y et al., Food Science and Human Wellness 2023 Ducheix S et al., Gastroenterology 2018

Nutr Metab Cardiovasc Dis. 2010, Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008 Mauro Finicelli et al, Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives

Nutrigenomics Effects of High Polyphenol EVOO Study Design

Changes in PBMC transcriptomics after acute EVOO intake

CTRL

2056 GENES

Anti-inflammatory

Anti-cancer

Metabolism

- β-oxidation of fatty acids ٠
- Energy expenditure ٠
- Insulin sensitivity

Pro-inflammatory

Pro-cancer

- Hypoxia factor pathway •
- Wnt/β-catenin Signaling ٠

circadian rhythms

Pathways Upregulated

Pathways Downregulated

RAR Activation

n53 Signaling

IL-8 Signaling

HGE Signaling

II -1 Signaling

II -3 Signaling

EGF Signaling

autophagy

MS CTRI

0 5 10 15 20 25 30 35

Changes in PBMC transcriptomics after acute EVOO intake

Pathways Upregulated

Pathways Downregulated

Changes in PBMC transcriptomics after acute EVOO intake

D'Amore, et al BBA 2016

Pathways Upregulated

Pathways Downregulated

Changes in PBMC transcriptomics after acute EVOO intake

RETINOIC ACID SENSORS

PPARγ

RXRβ

n=NS

C

MS

FATTY ACIDS SENSORS

MS

OXYSTEROLS SENSORS

D'Amore, et al, BBA 2013

Future Perspective (Multi) Organ On Chip (OOC) Courtesy of CN-BIC

D10: Exp End

- 3D Human in vitro microfluidic NASH model
- Uses the PhysioMimix[™] LiverChip ٠

D1: 'Fat'

Media

D0 Seed cells

This OOC model allows long term culture ٠ of cells that are continuously perfused

Media change every 2 days

Conclusions

- Nutrigenomics approaches can help to understand at molecular level the beneficial effects of a specific nutrient;
- EVOO intake exerts different beneficial effects (anti-inflammatory, metabolic, anticancer) for the body thus being useful in promoting health
 - Part of this effect is mediated by direct effects on gene transcription
 - Caution should be made in specific disease;

Acknowledgements

AIRC

